
Microservices and DevOps

DevOps and Container Technology
SkyCave

Henrik Bærbak Christensen

Case Study: SkyCave

• SkyCave is a

– Massive multi-user online, exploration and creation experience

with a bit of social networking

– … with a horrible user interface

– … and quite a lot of disregards for security

• Hum hum, this year we tack a bit of security on it, though…

• Inspired by the very first ‘interactive fiction’ game for a

computer: Colossal Cave Adventure

– Will Crowder, 1972

• I played my first game in 1986

CS@AU Henrik Bærbak Christensen 2

The History

CS@AU Henrik Bærbak Christensen 3

SkyCave is…

• … changed as it …

– Removes all adventure aspects

• ‘get lamp’ ‘throw axe’ ‘use key’

– Allows modifications to cave which is a (x,y,z) lattice

• ‘dig n You are in a maze with twisty passages’

– Will create a new room, north of this, with the given description

– Massive online / distributed system (MMO)

• Not one but 10, 1000(!), 1.000.000 (!!!) players

– … through horizontal scalable client-server architecture

– Single sign-on

• Once registered, each player can access every cave

CS@AU Henrik Bærbak Christensen 4

SkyCave is…

• … changed as it …

– Has some weird features with a learning focus

• ‘quote’ report a famous quote

– Is highly (re)configurable

• To support automated testing using test doubles

• … and therefore support test-driven development

• To support incremental architectural work

– HashMap → MongoDB

– Local call → HTTP → RabbitMQ

• To support architectural testing

– Saboteur implementation of central services

• To support automated evaluation by me

CS@AU Henrik Bærbak Christensen 5

And Used to…

• Learn about

– Broker architecture

• Implement missing methods in Player

– HTTP/Restish architecture

• Connect server to subscription, quote services

– (and later refactor the whole architecture into microservices)

– NoSQL databases

• Implement CaveStorage in MongoDB, Redis, Memcached, or …

– Container Tech

• Pack server into containers, deploy on swarm, …

– CI and CD

• Automate end-2-end testing and stuff

– MS architecture

• Refactor a Monolith into a full MS arch doing DevOps with your peers

CS@AU Henrik Bærbak Christensen 6

And…

• As one former student put it

– Wildly over-engineered architecture ☺

• SkyCave is a highly reconfigurable framework

– Lots of ‘hotspots’, lots of roles, complex dep injection

• SkyCave has history

– A few ‘fixme’s still around, a few ‘unused ideas’, etc.

• And as always

– There may be dragons

• Undiscovered bugs, unhealthy naming, old-school java, legacy, …

CS@AU Henrik Bærbak Christensen 7

Software Architecture Sidestep

The 3+1 Viewpoints

• +1: Architectural requirements

• Deployment Viewpoint

– Focus: What physical/virtual nodes are involved, what software

is running on each? The physical view

• Component Connector Viewpoint

– Focus: What processes/objects are executing, how does data

and control flow between them? The runtime view

• Module Viewpoint

– Focus: What compilation units are there, what classes, how are

they dependent upon each other?The static view

CS@AU Henrik Bærbak Christensen 9

Deployment and Execution View

Demo!

Interact.
Type ‘h’ for

help

Demo: Local to Mxx
Start ‘daemon’

Start ‘cmd’

CS@AU Henrik Bærbak Christensen 11

Rudimentary Statistics

• Client-server interaction

using HTTP on port

7777

– Path /info provides some

stats to review

CS@AU Henrik Bærbak Christensen 12

Relevant later, when we
scale horizontally...

Three Tier Architecture

• Three Tier Architecture

Presentation Layer / ‘cmd’

Application Layer / ‘daemon’

Storage Layer / Database

CS@AU Henrik Bærbak Christensen 13

Fowler: Monolith
First Pattern ☺

Deployment Viewpoint

• The handed out SkyCave (‘http.cpf’)

CS@AU Henrik Bærbak Christensen 14

Deployment Viewpoint

• The further down the road SkyCave

CS@AU Henrik Bærbak Christensen 15

C&C View

The runtime view

Synchroneous Method Call

• Client-server (cmd-daemon) interaction is just Broker

based.

CS@AU Henrik Bærbak Christensen 17

Server Side

• Server side handling – just interact with persistent

storage…

CS@AU Henrik Bærbak Christensen 18

Module View

Domain Model

• A very simple domain model !

– (And a good example of the fact that domain modeling helps very

little in designing a strong architecture!)

CS@AU Henrik Bærbak Christensen 20

Using FRDS.Broker

• Server: PlayerServant, CaveServant

• Client: PlayerClientProxy, CaveClientProxy

CS@AU Henrik Bærbak Christensen 21

https://leanpub.com/frds

Modules

• … are called ‘projects’ in Gradle terminology

CS@AU Henrik Bærbak Christensen 22

Flexibility

• Key Quality I strive for in my books: Flexibility

• Core Abstractions

– Abstract Factory: Create delegates

– ObjectManager: Lookup delegates

• Chained Property Files: CPF

– Read at start-up…

– Defines all

• Delegate implementations

• Host names and ports

CS@AU Henrik Bærbak Christensen 23

CPF

• Example: socket.cpf

CS@AU Henrik Bærbak Christensen 24

Which impl. to use?
Which host:port?

Chaining

• We will start by mostly using ‘http.cpf’

CS@AU Henrik Bærbak Christensen 25

Allows defining new configurations that inherit all
properties of an ancestor…

Solving Exercises

• You must define CPFs for each exercise you solve

– ‘mongo’ exercise

• src/main/resources/cpf/mongo.cpf

• Then start your daemon with the proper configuration

– gradle daemon –Pcpf=mongo.cpf

CS@AU Henrik Bærbak Christensen 26

Testability

Central for DevOps

CS@AU Henrik Bærbak Christensen 27

Testing and DevOps

• Speedy implementation and deployment is central

– So, a ‘quality gate’ of 1.000 hour manual tests is no-go

• Have automated tests in place for all/most code

• I am myself a sworn test-driven development believer ☺

CS@AU Henrik Bærbak Christensen 28

Do no implement anything without having production code covered by tests!!! It is
an exam evaluation criteria!

ToolStack

Open Source

• It is not a cutting edge programming course, so…

• Java 11, Gradle 6, IntelliJ

CS@AU Henrik Bærbak Christensen 30

Gradle

• Configuration based to a large extend…

• Know how the folder structure works!

– src/main/java root of production code

– src/test/java root of unit test code

– src/main/resources root of resources

• (the CPFs must reside in ‘cpf/’ subfolder)

CS@AU Henrik Bærbak Christensen 31

Mxx

• Avoid the hazzle of installing everything yourself

– And get used to Linux – you will need it for your Docker stuff

CS@AU Henrik Bærbak Christensen 32

